Title: Ergodic theory and lattice points
Speaker: Professor Amos Nevo
Speaker Info: IAS and Technion University
Brief Description:
Special Note:
Abstract:
The problem of counting integral points on homogeneous algebraic varieties is a natural generalization of such clasical problems as the lattice point counting problem in the Euclidean or hyperbolic plane, or the counting of unimodular integral matrices. We will describe a general approach to such counting problems based on ergodic theory, which has the advantage of providing a rather good error estimate. We will then describe how to generalize this approach and develop the ergodic theory of lattice subgroups, a subject that has thus far remained beyond the reach of classical ergodic theory. We will illustrate the results by a number of applications.Date: Tuesday, March 28, 2006Based on joint work with Alex Gorodnik.