Title: Weinstein skeleta and arboreal singularities
Speaker: Laura Starkston
Speaker Info: Stanford University
Brief Description:
Special Note:
Abstract:
We will discuss how to study 2n-dimensional Weinstein (gradient-like exact symplectic) manifolds via a core n-dimensional stratified complex called the skeleton. We show that the Weinstein structure can be homotoped to admit a skeleton with a unique symplectic neighborhood. Then we further analyze and divide the remaining singularities with a goal (partially achieved, generally in progress) of reducing the singularity types to a finite combinatorial list in each dimension, corresponding to (a signed version of) Nadler's arboreal singularities. We will discuss how arboreal singularities are natural in a Lagrangian skeleton, and what information about the symplectic manifold one might hope to extract out of an arboreal complex.Date: Thursday, October 05, 2017