EVENT DETAILS AND ABSTRACT


Dynamical Systems Seminar

Title: C^r closing lemma for geodesic flows on Finsler surfaces
Speaker: Dong Chen
Speaker Info: Ohio State University
Brief Description:
Special Note:
Abstract:

Title: C^r closing lemma for geodesic flows on Finsler surfaces

Abstract: In this talk, I will give a proof of the C^r (r\geq 2) closing lemma for geodesic flows on Finsler surfaces. A Finsler metric on a smooth manifold is a smooth family of quadratically convex norms on each tangent space. The geodesic flow on a Finsler manifold is a 2-homogeneous Lagrangian flow.

The C^r closing lemma says that for any compact smooth Finsler surface and any vector v in the unit tangent bundle, the Finsler metric can be perturbed in C^r topology so that v is tangent to a periodic geodesic in the resulting metric. This allows us to get the density of periodic geodesics in the tangent bundle of a C^r generic Finsler surface.

Date: Tuesday, February 12, 2019
Time: 4:00pm
Where: Lunt 104
Contact Person: Professor Jeff Xia
Contact email: xia@math.northwestern.edu
Contact Phone: 847-491-5487
Copyright © 1997-2024 Department of Mathematics, Northwestern University.