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NAME:

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Problem A1. Find all positive integers x, y such that 4x + 5 = 9y.

Answer:

We will prove that the only solution is x = y = 1.

* Method 1 : We have

9y − 4x = 32y − 22x = (3y + 2x)(3y − 2x) = 5 ,

hence 3y+2x ≤ 5, and the only positive values of x, y that verify this inequality are x = y = 1.

* Method 2 : We have that 4x ≡ 0 (mod 8) for x ≥ 2, and 9y ≡ 1 (mod 8) for every y. Since
0 + 5 6≡ 1 (mod 8), the only posibility is x = 1, and y = 1.
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Problem A2. Prove that from any point inside an equilateral triangle, the sum of the
measures of the distances to the sides of the triangle is constant.

Answer:

Let P be a point inside an equilateral triangle ABC. Let dA, dB, dC the distance from P to
the side opposed to A,B,C respectively, and assume |AB| = |BC| = |CA| = s. The area
S of the triangle equals the sum of the areas of the three triangles APB, BPC and CPA
respectively, i.e.

S =
1

2
|BC|hA +

1

2
|CA|hB +

1

2
|AB|hC

=
s

2
(hA + hB + hC) ,

hence hA + hB + hC = 2S/s = constant.
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Problem A3. Let a, b, c, d > 0. Prove that

1

a
+

1

b
+

4

c
+

16

d
≥ 64

a + b + c + d
.

Answer:

For x, y > 0 we have

0 ≤ (x− y)2 = (x + y)2 − 4xy =⇒ 1

x
+

1

y
≥ 4

x + y
,

hence:
1

a
+

1

b
+

4

c
+

16

d
≥ 4

a + b
+

4

c
+

16

d
≥ 16

a + b + c
+

16

d
≥ 64

a + b + c + d
.
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Problem A4. Find lim
n→∞

n∏
k=0

(
1 +

1

32k

)
.

Answer:

If we call the product Pn we have(
1− 1

3

)
Pn =

(
1− 1

3

)(
1 +

1

3

) (
1 +

1

32

)
. . .

(
1 +

1

32n

)
=

(
1− 1

32

)(
1 +

1

32

)
. . .

(
1 +

1

32n

)
. . .

=

(
1− 1

32n+1

)
−→
n→∞

1 .

Hence lim
n→∞

Pn =

(
1− 1

3

)−1

=
3

2
.
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Problem A5. Prove that if a, b are two positive integers and
√

a is irrational then
√

a+
√

b
is irrational.

Answer:

Calling r =
√

a +
√

b, we have
√

a =
1

2

(
r +

a− b

r

)
. So if r were rational so would be

√
a,

contradicting the hypothesis.
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Problem A6. Prove that in the following product

P = (1− x + x2 − x3 + · · · − x99 + x100)(1 + x + x2 + x3 + · · ·+ x99 + x100)

after multiplying and collecting terms, there does not appear a term in x of odd degree.

Answer:

Let p(x) and q(x) be the following polynomials:

p(x) = 1 + x2 + x4 + · · ·+ x98 + x100 , q(x) = 1 + x2 + x4 + · · ·+ x98 .

Then the given product can be written:

P = [p(x)− x q(x)][p(x) + x q(x)]

= [p(x)]2 − x2 [q(x)]2 .

That expression contains only even powers of x.


